МО Приморско-Ахтарский район Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №22 имени Героя России В.Е.Едаменко Приморско-Ахтарский район МБОУ СОШ №22

УТВЕРЖДЕНО И.о.директора _____ Колесник А.В. Приказ № 561 от «31» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Астрономия»

для обучающихся 11 класса

Пояснительная записка

Астрономия в российской школе рассматривалась как курс, который, завершая физикоматематическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюцию Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной.

Программа составлена на основе Примерной основной образовательной программы основного общего образования, одобренной решением федерального методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15); рабочей программы к УМК Б.А.Воронцова-Вельяминова, Е.К.Страута. Астрономия. 11 класс, М.: Дрофа, 2018 г., в соответствии с требованиями к результатам обучения Федерального государственного образовательного стандарта среднего общего образования.

Изучение курса рассчитано на 34 часа. При планировании 1 час в неделю для 11-х классов в течение учебного года.

Важную роль в освоении курса играют проводимые во внеурочное время собственные наблюдения учащихся. Специфика планирования этих наблюдений определяется двумя обстоятельствами. Во-первых, они (за исключением наблюдений Солнца) должны проводиться в вечернее время. Во-вторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности планет, необходимо учитывать их видимость.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

ФГОС основного и среднего общего образования в качестве целевых ориентиров общего образования достижение совокупности личностных, предметных и метапредметных образовательных результатов.

Личностными результатами обучения физике в средней школе являются:

- 1. В сфере отношений обучающихся к себе, к своему здоровью, к познанию себя ориентация на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы; готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности, к отстаиванию личного достоинства, собственного мнения, вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны, к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества; принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- 2. В сфере отношений обучающихся к России как к Родине (Отечеству) российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите; уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн); формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения; воспитание уважения к культуре, языкам, традициям и обычиям народов, проживающих в Российской Федерации;
- 3. В сфере отношений обучающихся к закону, государству и гражданскому обществу гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающие закон и правопорядок, осознанно

традиционные национальные общечеловеческие гуманистические принимающего И демократические ценности, готового к участию В общественной жизни; неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность; мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире; готовность к договорному регулированию отношений в группе или социальной организации; готовность обучающихся к конструктивному участию в принятии решений, затрагивающих права и интересы, в том числе в различных формах общественной самореализации, самоуправления, общественно значимой деятельности; приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям; готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофибии, коррупции, дискриминации по социальным, религиозным, оасовым, национальным признакам и другим негативным социальным явлениям;

- 4. В сфере отношений обучающихся с окружающими людьми нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; принятие гуманистических ценностей, осознанное, уважительное и доброжетельное отношение к другому человеку, его мнению, мировоззрению; способность к сопереживанию и формированию позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и ивалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь; формирование выраженной в поведении нравственной позиции, в том числе способность к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (честь, долг, справедливость, милосердие и дружелюбие); компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебноисследовательской, проектной и других видах деятельности;
- 5. В сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре мировоззрение, соответствующее современному уровню развития науки, значимость науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том числе самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов, умений и навыков разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности; эстетическое отношение к миру, готовность к эстетическому обустройству собственного быта;
- 6. В сфере отношений обучающихся к труду, в сфере социально-экономических отношений уважение всех форм собственности, готовность к защите своей собственности. Осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности, готовность к самообслуживанию, велючая обучение и выполнение домашних заданий.

Метапредметные результаты обучения астрономии в средней школе представлены тремя группами универсальных учебных действий.

Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- определять несколько путей достижения поставленной цели;
- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной целью;
- оценивать последствия достижения поставленной цели в учебной деятельности, собственной жизни и жизни окружающих людей.

Познавательные универсальные учебные действия Впускник научится:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).

Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектой команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и преддотвращать конфликты до их активной фазы;
- координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и вертуального);
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;

- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Астрономия, ее значение и связь с другими науками Предметные результаты обучения в средней школе Выпускник научится:

- объяснять и анализировать роль и место астрономи в формировании современной научной картины мира, в развитии современной технике и технологий, в практической деятельности людей;
- характеризовать взаимосвязь между астрономией и другими естественными науками;
- воспроизводить сведения по истории развития астрономии, о ее связях с физикой, математикой, химией:
- использовать полученные ранее знания для объяснения устройства и принципа работы телескопа.

Практические основы астрономии.

Предметные результаты изучения данной темы позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное время);
- объяснять необходимость введения высокосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движение звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять карту звездного неба для поиска на небе определенных созвездий и звезд.

Строение Солнечной системы.

Предметные результаты освоения данной темы позволяют:

- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенность движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы;

Природа тел Солнечной системы.

Предметные результаты изучения темы позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;

- определять и различать понятия (Солнечная система, планета, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеориты, метеоры, болиды, метеороиды);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероида-кометной опасности, возможности и способы ее предотвращения.

Солнце и звезды.

Предметные результаты освоения темы позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр-светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;
- описывать механизм вспышек новых и сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезд;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Строение и эволюция Вселенной.

Предметные результаты изучения темы позволяют:

- объяснять смыслпонятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период-светимость»;
- распознавать типы галактик (спиральные, элиптические, неправильные);
- сравнивать выводы А.Энштейна и А.А.Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла;
- по светимости сверхновых;
- оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения;

- с момента Большого взрыва;
- -интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии»;
- вида материи, природа которой неизвестна.

Жизнь и разум во Вселенной. **Предметные результаты** позволяют:

-систематизировать знания о методах исследования состояния проблемы существования жизни во Вселенной.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

В результате учебно-исследовательской деятельности выпускник получит представление:

- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
- о таких понятиях, как концепция, научная гипотеза, метод, эксперимент, надежность гипотезы, модель, метод сбора и метод анализа данных;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;
- об истории науки;
- о новейших разработках в области науки и технологий;
- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т.п.);
- о деятельности организаций, сообществ и структур, заинтересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры и т.п.);

Выпускник сможет:

- решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные залачи):
- использовать основной алгоритм исследований при решении своих учебно-познавательных задач;
- использовать основные принципы проектой деятельности при решении своих учебно-познавательных задач и задач, возникающих в культкрной социальной жизни;
- использовать элементы математического моделирования при решении исследовательских задач;
- использовать элементы математического анализа для интерпретации результатов, полученных в ходе учебно-исследовательской работы.

С точки зрения формирования универсальных учебных действий в ходе освоения принципов учебно-исследовательской деятельности *выпускник научится*:

- формулировать научную гипотезу, ставить цель в рамках исследования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;
- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культкрном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;
- оценивать ресурсы, в том числе и нематериальные, такие как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека.

СОДЕРЖАНИЕ КУРСА

Астрономия, ее значение и связь с другими науками.

Астрономия, ее связь с другими науками. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Телескопы и радиотелескопы. Всеволновая астрономия.

Практические основы астрономии.

Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмение Солнца и Луны. Время и календарь.

Строение Солнечной системы.

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы.

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды и метеориты.

Солнце и звезды.

Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды — далекие солнца. Годичный параллакс и расстояние до звезд. Светимость, спектр. Цвет и температура различных классов звезд. Диаграмма «спектр-светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселинной. Эволюция звезд различной массы.

Строение и эволюция Вселенной.

Наша Галактика. Ее размеры и структура. Два типа населения Галактики. Межзвездная среда: газ и пыль. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы. Разнообразие мира галактик. Квазары. Скопление и сверхкопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Нестационарная Вселенная А.А.Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Жизнь и разум во Вселенной.

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

ТЕМАТТИЧЕСКОЕ ПЛАНИРОВАНИЕ

34 часа, 1 ч в неделю

Основное содержание Основные виды учебной деятельности Астрономия, ее значение и связь с другими науками (2 ч) Астрономия, ее связь с другими науками. Развитие Поиск примеров, подтверждающих практическую астрономии было вызвано практическими направленность астрономии. Применение знаний, потребностями человека, начиная с глубокой полученных в курсе физики, для описания древности. Астрономия, математика и физика – их устройства телескопа. Характеристика преимуществ развитие в тесной связи друг с другом. Структура и наблюдений, проводимых из космоса. масштабы Вселенной. Наземные и космические приборы и методы исследования астрономических объектов. Телескопы и радиотелескопы.

Практические основы астрономии (7 ч).

Звездная величина как характеристика освещенности, создаваемая звездой. Согласно шкале звездных величин разность на 5 величин, различие в потоках света в 100 раз. Экваториальная система координат: прямое восхождение и склонение. Использование звездной карты для определения объектов, которые можно наблюдать в заданный момент времени.

Высота полюса мира над горизонтом и ее зависимость от географической широты места наблюдения. Небесный меридиан. Кульминация светил. Оределение географической широты по измерению высоты звезд в момент их кульминации. Эклиптика и зодиакальные созвездия. Наклон эклиптики к небесному экватору. Положение Солнца в дни равноденствий и солнцестояний. Изменение в течение года продолжительности дня и ночи на различных географических широтах. Луна – ближайшее к Земле небесное тело, ее единственный естественный спутник. Период обращения Луны вокруг Земли и вокруг своей оси – сидерический (звездный) месяц. Синодический месяц – период полной смены фаз Луны. Условия наступления солнечных и лунных затмений. Их периодичность. Полные, частные и кольцеобразные затмения Солнца. Полные и частные затмения Луны. Предвычисление будущих затмений.

Точное время и определение географической долготы. Часовые пояса. Местное и поясное, летнее и зимнее время. Календарь — система счета длинных промежутков времени. История календаря. Високосные годы. Старый и новый стиль.

Наблюдения (невооруженным глазом): основные созвездия и наиболее яркие звезды осеннего,

Применение знаний, полученных в курсе географии, о составлении карт в различных проектах. Работа с картой звездного неба при организации наблюдений. Характеристика отличительных особенностей суточного движения звезд на полюсах, экваторе и в средних широтах Земли, особенностей суточного движения Солнца на полюсах, экваторе и в средних широтах Земли. Изучение основных фаз Луны. Описание порядка смены фаз Луны, взаимного расположения Земли, Луны и Солнца в моменты затмений. Анализ причин, по которым Луна всегда обращена к Земле одной стороной, необходимости введения часовых поясов, высокосных лет и нового календарного стиля. Объяснение причин, по которым затмения Солнца и Луны не происходят каждый месяц. Подготовка и выступление с презентациями и сообщениями.

зимнего и весеннего неба. Изменение их положения с течение времени. Движение Луны и смена ее фаз.

Строение Солнечной системы (8 ч)

Геоцентрическая система мира Аристотеля — Птолемея. Система эпициклов и дифферентов для объяснения петлеобразного движения планет. Создание Коперником гелиоцентрической системы мира. Роль Галилея в становлении новой системы мира.

Внутренние и внешние планеты. Конфигурации планет: противостояние и соединение.

Периодическое изменение условий видимости внутренних и внешних планет. Связь синодического и сидерического (звездного) периодов обращения планет

Три закона Кеплера. Эллипс. Изменение скорости движения планет по эллиптичеким орбитам. Открытие Кеплером законов движения планет — выжный шаг на пути становления механики. Третий закон — основа для вычисления относительных расстояний планет от Солнца.

Размеры и форма Земли. Триангуляция. Горизонтальный параллакс. Угловые и линейные размеры тел Солнечной системы. Подтверждение справедливости закона тяготения для Луны и планет. Возмущения в движении тел Солнечной

Открытие планеты Нептун. Определение массы небесных тел. Масса и плотность Земли. Приливы и отпивы

Время старта КА и траектории полета к планетам и другим телам Солнечной системы. Выполнение маневров, необходимых для посадки на поверхность планеты или выхода на орбиту вокруг нее.

Контрольная работа N_2 1: по теме «Практические основы астрономии. Строение Солнечной системы».

Гипотеза о формировании всех тел Солнечной

системы в процессе длительной эволюции

Объяснение петлеобразного движения планет с использованием эпициклов и дифферентов. Описание условий видимости планет, находящихся в различных конфигурациях. Анализ закона Кеплера, их значеня для развития физики и астрономии. Объяснение механизма возникновения возмущений и приливов. Подготовка презентаций и сообщений и выступление с ними. Решение задач.

Природа тел Солнечной системы (7 ч).

холодного газопылевого облака. Объяснение их природы на основе этой гипотезы. Краткие сведения о природе Земли. Условия на поверхности Луны. Два типа лунной поверхности — моря и материки. Горы, кратеры и другие формы рельефа. Процессы формирования поверхности Луны и ее рельефа. Результаты исследований, проведенных автоматическими аппаратами и астронавтами. Внутреннее строение Луны. Химический состав лунных пород. Обнаружение воды на Луне. Перспективы освоения Луны. Анализ основных характеристик планет. Разделение планет по размерам, массе и средней плотности. Планеты земной группы и планеты-гиганты. Их

Сходство внутреннего строения и химического состава планет земной группы. Рельеф поверхности.

различия.

представлений о происхождении тел Солнечной системы, табличных данных, признаков сходства и различий изучаемых объектов, классификации объектов, определения понятия «планета». Сравнение природы Земли с природой Луны на основе знаний из курса географии. Объяснение причины отсутствия у Луны атмосферы, причин существующих различий, процессов, происходящих в комете при изменении ее расстояния от Солнца. Описание основных форм лунной поверхности и их происхождения, внешнего вида астероидов и комет. На основе знаний законов физики объяснение явлений и процессов, происходящих в атмосферах планет, описание природы планет-гигантов, описание и объяснение явлений метеора и болида. Описание и сравнение природы планет земной группы. Участие в дискуссии. Подготовка

Анализ основных положений современных

Вулканизм и тектоника. Метеоритные кратеры. Особенности температурных условий на Меркурии, Венере и Марсе. Отличия состава атмосферы Земли от атмосферы Марса и Венеры. Сезонные изменения в атмосфере и на поверхности Марса. Состояние воды на Марсе в прошлом и настоящее время. Эволюция природы планет. Поиски жизни на Марсе. Химический состав и внутреннее строение планетгигантов. Источники энергии в недрах планет. Облачный покров и атмосферная циркуляция. Разнообразие природы спутников. Сходство природы спутников с планетами земной группы и Луной. Наличие атмосфер у крупнейших спутников. Строение и состав колец.

Астероиды главного пояса. Их размеры и численность. Малые тела пояса Койпера. Плутон и другие карликовые планеты. Кометы. Их строение и состав. Орбиты комет. Общая численность комет. Кометное облако Оорта. Астероидно-кометная опасность. Возможности и способы ее предотвращения. Одиночные метеоры. Скорости встречи с Землей. Небольшие тела (метеороиды). Метеорные потоке, их связь с кометами. Крупные тела. Явление болида, падение метеорита. Классификация метеоритов: железные, каменные, железокаменные.

презентаций и сообщений и выступление с ними.

Солнце и звезды (5 ч)

Источник энергии Солнца и звезд – термоядерные реакции. Перенос энергии внутри Солнца. Строение его атмосферы.

Грануляция. Солнечная корона. Обнаружение потока солнечных нейтрино. Значение этого открытия для физики и астрофизики. Проявление солнечной активности: солнечные пятна, протуберанцы, вспышки, корональные выбросы массы. Потоки солнечной плазмы. Их влияние на состояние магнитосферы Земли. Магнитные бури, полярное сияние и другие геофизические явления, влияющие на радиосвязь, сбои в линиях электропередачи. Период изменения солнечной активности.

Звезда — природный термоядерный реактор. Светимость звезды. Многообразие мира звезд. Их спектральная классификация. Звезды-гиганты и звезды-карлики. Диаграмма «спектр-светимость». Двойные и кратные звезды. Звездные скопления. Их состав и возраст.

Цефеиды – природные автоколебательные системы. Зависимость «период-светимость». Затменнодвойные звезды.

Вспышки новых – явлений в тесных системах двойных звезд. Открытие «экзопланет» - планет и планетных систем вокруг других звезд. Зависимость скорости и продолжительности эволюции звезд от массы. Вспышка сверхновой – взрыв звезды в конце ее эволюции. Конечные стадии жизни звезд: белые карлики, нейтронные звезды (пульсары), черные дыры.

На основе знаний законов физики описание и объяснение явлений и процессов, наблюдаемых на Солнце. Описание: процессов, происходящих при термоядерных реакциях протон-протонного цикла; образования пятен, протуберанцев и других проявлений солнечной активности на основе знаний о плазме, полученных в курсе физики.

Характеристика процессов солнечной активности и механизма их влияния на Землю.

Опреление понятия «звезда». Указание положения звезд на диаграмме «спектр-светимость».

На основе знаний по физике: описание пульсации цефеид как автоколебательного процесса; оценка времени свечения звезды по известной массе запасов водорода; описание природы объектов на конечной стадии эволюции звезд.

Подготовка презентаций и сообщений и выступление с ними.

Решение задач.

Строение и эволюция Вселенной (4 ч) Контрольная работа № 2 по теме «Солнце и Солнечная система. Строение и эволюция Вселенной». Описание строения процесса формиров газопылевых облак

Описание строения и структуры Галактики, процесса формирования звезд из холодных газопылевых облаков.

Излучение объектов плоской и сферической подсистемы.

Объяснение на основе знаний по физике различных механизмов радиоизлучения.

Определение типов галактик. Применение принципа Доплепа для объяснения «красного смещения». Доказательство справедливости закона Хаббла для наблюдателя, расположенного в любой галактике. Подготовка презентаций и сообщений и выступление с ними.

Жизнь и разум во Вселенной (1 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности радиоастрономии и космонавтики для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Подготовка презентаций и выступление с ними. Участие в дискуссии.

Литература:

- 1. Страут, Е. К. Астрономия. Базовый уровень. 11 класс: рабочая программа к УМК Б. А. Воронцова-Вельяминова, Е. К. Страута: учебно-методическое пособие /Е. К. Страут. М.: Дрофа, 2017.
- 2. Б.А.Воронцов-Вельяминов, Е.К.Страут. Астрономия. Учебник 11 класс. М: Дрофа, 2018.

СОГЛАСОВАНО

Протокол заседания методического совета объединения учителей математики и физики МБОУ СОШ № 22 от 30.08.2023 г. № 1

Л.И.Зоненко_

СОГЛАСОВАНО Заместитель директора по УВР

30.08.2023 г.
